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Abstract

Geometric contour following for scanning control in SFF application is used to
refine the boundary ofthe parts for increasing the accuracy or to develop the capability to
arrange various scanning directions and paths for improving the part strength. The scanners
must be driven to follow the prescribed path as fast as possible, limited by available
torques. In this paper the minimum time optimal control problem with specified path and
limited control torque is formulated. According to the trade-off between various
requirements, a control strategy is studied.

Introduction

Geometric contour following for scanning control in SFF is used to refine the
boundary of the parts for inqreasing the accuracy or to develop the capability to arrange
various scanning directions and paths for improving the part strength. The raster mode and
vector mode in scanner application are common in industry. However, the former is not
appropriate to this application,the latter is too<slow. Thus, it is important to develop a
control strategy such that the scanners are driven to follow the prescribed path as fast as
possible without exceeding the available torques. In this paper, the minimum time optimal
control with specified path and limited control torque is formulated. One special point in
SFF application is that the control torques and specified path are in different spaces shown
in fig#l, like a two-degree-of..freedom rotational manipulator.

For general geometric path, it could be defined by a parameter. Specially, arc length
, s ' is used in this paper such that its fJISt and second derivatives present tangential velocity
and acceleration. Since the path following problem is with one degree of freedom nature,
by choosing the state variables as sand ds/dt, the problem could be converted to s-space,
and phase plane technique is usable. Based on the Pontryagin's minimum principle, it is
shown that there exists no singular subarc in the minimum time solution [1]. The same
result is obtained and used by Bobrow, Dubowsky and Gibson ( 1985 ) [2], and Shin and
McKay ( 1985 ) [3], when they develop their construction algorithms for switching curve
in phase plane, which are adopted here because they are conceptually easy.

The steady state solution for a circle path is obtained and compared with the
maximum constant speed solution. Then, the transient parts are added. From the
observations, a control strategy is proposed with a trade-off between various requirements
as below:

(l) The speed is as fast as possible with available bounded torque.
(2) The speed is constantwise.
(3) The speed is limited above by available Laser power.
(4) The speed is limited below by the continuity of sintering which does not occur if

Laser power is too low.
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Minimum Time Optimal Control Problem

8x = G1 (x, y)
8v =G2( x, y)

Working surfacex

y

Laser

Galvanometer
system

flg#l. Scanner System

A. 8x-8y space: The state variables are chosen as 8x, cox, 8y, COy.
tc

min J = min f dt = min tc

°
subjected to: d8x/dt = COx,

dcox/dt = gl ( 8x, cox) + 'tx,
d8y/dt = COy,

dcoy/dt =g2( 8y, COy ) + 'ty,

and -M ~ 'tx ~ M, -M ~ 'ty ~ M, where ¥ is a positive value
S(x,y) = 0, which is a simple closed curve with no sharp comer.
x(O) = xo, x(tc) = xc, vx(O) = VxO, vx(tC) = VxC,
yeO) = YO, y(tc) = YC, Vy(O) = VyO, Vy(tc) = VyC, are given.

with the nonlinear geometric relation between control space and specified path space
as shown in fig#l : 8x = Ol( x, Y)

8y = 02( x, y)

then 8x(0) = 8xo, 8x(tc) = 8xc, cox(O) = coxO, cox(tc) = COxC,
8y(0) = 8yO, 8y(tc) =8yC, coy(O) = (OyO, COy(tc) = COyc,
are somefunctiofls of xo, xc, vxO, Vxc, YO, Yc, VyO, vyC·

Note that (01,02) is one-to-one mapping between (x,y) and (8x,8y) in the SFF
application, and all the derivatives are continuous in working domain [6].
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B. s - space : S(x,y) =i ocould be defined as x = f1 ( S ) and y = f2( s ), where s is the
unit arc length, and the ftrSt derivatives of f1 ( s ) and f2( s ) are continuous
since no sharp comer in the path. Let v = ds/dt, u = d2s/dt2,

then 9x=Gl(f1(S),f2(S»=h1(S)

9y = G2(f1( s), f2(S » =h2( s )

and rox = h1'( s) v, drox/dt = h1"( s) v2 + h1'( s) u,

roy = h2'( s ) v, d<oy/dt = h2"( s ) v2 + h2'( s ) u,
Note that h1'( s ) and h2'( s ) are continuous [7].

The minimum time optimal control problem may be converted as
tf

min J = min f dt = min tf

°subjected to ds/dt = v, with s(O) = so, S(tf) = Sf,
dv/dt = u, v(O) = yo, V(tf) = Vf,

and -M S; h1"( S ) v2 + h1'( s ) u - g1( h1( S ), hl'( S ) v ) S; M (C1)
, -M S; h2"( s ) v2 + h2'( s ) u - g2( h2( s ), h2'( s ) v) S; M (C2)

Based on the Pontryagin's minimum principle, it is shown that there exists no
singular subarc in the minimum time solution, the solution is always on one
boundary of those inequality constraints.

Solution of the Minimum Time Optimal Problem

From the Pontryagin's minimum principle, the two-point-boundary-value problem
is obtained by the necessary conditions and solved by Shooting method [4] [5]. However,
the difficulty is found after the solution of first example is obtained. There exist the second
derivatives in those inequality constraints, which are put into the Hamiltonian. Then, the
dynamic equations of Lagrangian multipliers contain the third derivatives, dlJdt = - aHlas,
and the forth derivatives appear in th~ formula of shooting method. The numerical
singularity and sensitivity of convergence must be handled. Based on the motivation as
below, the phase plane technique is followed [2],[3].

tr Sf
min J = min f dt = min f (lIv)ds° sO
In the phase plane, minimizing the cost is conceptually equivalent to maximizing the

speed. The basic steps described below are used to construct the optimal trajectory in
phase plane.

#1: To find the feasible region in phase plane, construct vmax (s) curve:
Rewrite the inequality constraints, (Cl) and (C2)
L1(S,V) S; uS; U1(S,V)
L2(S,V) S; u S; U2(S,V)
where Ll(S,V) = [ - M - h!"( s ) v2 + gl( hl( S ), hl'( S ) v ) ] / hl'( S )

L2(S,V) = [- M - h2"( s ) v2 + g2( h2( s ), h2'( s ) v )] / h2'( s )
U1(S,v)=[M-h1"(S)V2+g1( h1(S),h1'(S)V )]/h1'(S)
U2(S,V) = [ M - h2"( s ) v2 + g2( h2( s ), h2'( s ) v )] / h2'( s )

Given s, so S;s S; Sf, find Vmax such thatthe acceleration u exists,
that is max(Lt, L2) S; min(Ut,U2)

128



#2 : To perform the forward integration for s, and v,
with maximum u = min(Ut,U2) or minimum u = max(LI, L2)

#3 : To perform the back~ard integration for s, and v,
with maximum u = mtn(Ut,U2) or minimum u = max(LI, L2)

#4: Use #2 and #3 iteratively to construct the trajectory in phase plane such that v(s) is as
high as possible without exceeding the Vmax (s) curve.

#5: After ( s, yes) ) curve is obtained, control torques in control space are calculated by
tx = hl"( S ) v2 + hl'( s ) u - gl( hl( s ), hl'( S ) v)

t y h2"( s ) v2 + h2'( s ) u - g2( h2( s ), h2'( s ) v)

Notice that this solution satisfies not only the state equations and inequality constraints
in control space but also the equality constraint in path space. The above steps are
implemented by MatLab package ( The MathWorks, Inc., Sherborn, MA ) for the results
shown in this paper.

Example

Model is given by double integral and assume ex = x, ey = y,

dex/dt cox,

dcox/dt = gl ( ex, COx ) + t x,

dey/dt = vy,

dcoy/dt = g2( ey, COy ) + ty,

with ex(O) = x(O) = 0,

cox(O) = vx(O) = VxO,

ey(O) = yeO) = -1,

coy(O) = Vy(O) = 0,

eX(tf) = X(tf) = 0,

COx(tf) = Vx(tf) = Vxf,

ey(tr) = y(tf) = -1,

COy(tf) = Vy(tf) = 0,

and -M~tx~M, -M~ty~M, whereM= 1.1715728

S(x,y) = 0 = x2 + y2 - r2, whole circle, with arc length 2m, r =2

===> x = r*sin(0.5s), y = -r*cos(s), 0 ~ s ~ 2r1t, that is So = 0, Sf = 2r1t

Case 1 : Vxf = VxO = (r*M )0.5, ==> vo = 1.530733, Vf = 1.530733, results is shown in
fig#1.

(a) optimal solution: tt = 8.0
(b) maximum constant speed solution: tf = 8.2094

( tf - tf* ) / tf = 2.55% which is independent of M and r.

Case 2: Vxf = VxO = 0, ==> VO = 0, Vf = 0, results is shown in fig#2.
(a) optimal solution: tt = 9.3330
(b) maximum constant speed solution : tf = 9.4993

(tf tf*) / tf = 1.75%

129



>

Phase plane
· .

2 ~~~~i.~~<? ~<?g~<?!1i .
~..~- ~"~-" ,,:':"::-, <'~

· .
1 : ~ .

2 control torque

s

-2L---~--"":_-----"-_....J

02468
time

105
O~-----'--------''------l

o

8 864

time

2

" • "I' •

.' ex: '.: :o ey ,:,~."" : .1
: : " : '
, ,
, ~,

: I, : ./-2 L...ooo<:._~__-:...,.._-.:>o...:-.:_..:!:l....J

o

2.--__~-v-el-oc..-l......·ty"------__.

, ."

... : coy' : ,.'

O
,. .,

..........:;, .. COX XL/(' .
• I • ~ •· '\ . .. .:... : .I:· \. . . .
: -" .. ~-,.,.. .· . .-2 . . .

024 6
time

optimal solution: tf* = 8.0

s

2 ¥~~~~1?~~. ~g~<?~ .
.. .. .. .. .. .. ".- '" - .. .. '" ..

",,, . '" , ",.

control torQue2.-------=-:::.::::.::::.:;..:.:::.::..:::a.::=-------.

_2L.- --l

o 5 10

time

~: ·~·X""y ;..-" .
o ....... ~SZJ""".,.< ~7'" ........_..~., .......

'" "ex /:. .".
~ .

........... " :

105

Phase plane

1 : ~ .
· ,, ,· ,· .· .

OL.----~· '_--1

o

>

veloci2...------.:..:=.=;:.::.=.l.---_
..-

.f
, • fo :.£Ox ~ :/ .

\

"
-2~----~--------'

o 5 10

time

2 .---.",...,.,,.........;=;;;;.J;c:::;==~--__.

,.
,

.lex '..o sy , : j .": ,., .
~,

:'-2 L.£. ---'---'"-......:...-..:!>~__

o 5 10

time

maximum constant speed solution: tf = 8.2094
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Control Strategy

In SFF application or other Laser application, one prefers the near constant
travttUillgspe~t<>ga.illthe\lnif()nnttJtpos\lrtt()fLa.serpower a.s well a.sthe fastest~ptted to
increasethe productivity. From the steady<state solutionof previous example, the travelling
time of the fastest solution is only 2.55% shorter than that of the ma.ximum constant speed
solution, which has smooth control torque function. Therefore, if there exists such
circlelike arc in the specified path, the maximum constant speed soluti<>n is a nice choice. In
the example below, there only exists a short part in the travelling path with strict speed
limit, a result from the trade-off between smoothness and travelling time is shown in f#4.
Since s is chosen to be unit arc length, v(t) presents the travelling speed ofLaser spot in the
path space. Therefore, if Laser power is on-line adjustable, v(t) is the reference.
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fig#4 The trade-off between smoothness and travelling time: tf = 11.9221
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If the travelling speed is limited above by the available Laser power, it is straight
forward to put an extra constraint in phase plane and modify the control trajectory. This is
shown in fig#5.

105

time

-~~o 5 10

time

2r--------.---.......-+---,

o
-2L...--------------l

o20

s
10

>

fig#5 Speed limited by available Laser power: tf = 12.3217

If the comer is too sharp, that is the radius is too small, the speed. limit region in
phase plane may be very low. Then, the Laser spot must slow down when pass that
comer. In order to gain uniform degree ofsintering, Laser power need to be turned down.
Thus, the speed is limited below by the continuity of sintering which does not occur if
Laser power is too low. When, the radius and maximumtorque are given, the fastest speed
around the comer could be seen in phase plane.•The design of the. radius. at comer should
compromise with the speed requirement, available Laser pOwer. The change of infeasible
speed region in phase plane corresponding to various radius is shown in fig#6.
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fig#6 Infeasible speed region vs Radius of comer
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Conclusion

Given a scanner system, the maximum torque, the specified path, and other
circutnstance in SFFapplication,thequ~sti()n,'hQwJastcouldth~scannel"t>edriven 1', is
answered in this paper. It is nice to formulate the minimumitime optimalcontrol problem in
s-space since (1) fhe problem is one-degree-of-freedom such that thephase~plane technique
is useful, (2) v=ds/dt presentsthe travelling speed along the path which could be referred
for any speed constraints when s is unit arc length. The control strategy is proposed. If the
path is near circle .arc, the infeasible speed region is like that shown in fig#2 and fig#3, the
maximum constant speed solution is chosen since it only needs 2.55% more than the time
needed by optimal solution, and has smoother control trajectory. If speed is limited by
available Laser power, the constraints could be straight forward added into phase plane
diagram. If continuity and uniformity of sintering are required, the radius of comer in the
path must be restricted. In phase plane diagram, it is easy to see the speed limit around the
comer corresponding to the given radius.
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