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Abstract

A finite element heat transfer analysis is applied to the selective laser sintering of a layered part made
from polymer powder. The sintering subroutine in the code is based on the analyses of Scherer [1,2] and
Mackenzie and Shuttleworth [3]. The density and conductivity of the particle bed are treated as functions of
the void fraction of the bed. The Yagi - Kunii [4] thermal characterization of the powder bed is used to calcu-
late the effective conductivity of the bed. An example is worked for ABS powder.

Introduction

Upon heating, a bed of polymeric powder undergoes a temperature rise and a densification. To better
understand this process considerable effort has been expended recently to mathematically model it [5,6]. A
successful model would at a minimum provide density (or void fraction) and temperature as a function of
time everywhere in the sintering powder bed. Preferably it would also yield the distribution of stresses that
can develop in the sintered part as it cools. Inputs for a candidate model include the spatial and time param-
eters of the input flux, which would include the path followed by the laser beam in scanning out an arbitrary
part, the initial temperature of the powder, other thermal boundary conditions and the thermo-mechanical
material properties of the constituents of the powder bed and sintered material,

The problem of modeling the sintering of a bed of particles on a microscopic scale (i.e.,smaller than the
particles themselves) is a computationally daunting task. If, instead, the particle bed is conceptualized as a
continuum with effective thermal properties that may depend on temperature and porosity, the task is made
more tractable. This is the approach used in Ref.5 and in this work: conductivity and specific heat of a
homogenized particle bed are used in the model. The effective specific heat of the bed is the same as that for
the solid particles because of the small mass of air. Thermal conductivity is calculated from the Yagi - Kunii
[4] relationship:

Kot = BI-8)K, / (1+ 0K, / Ky) EQ1)

where K., 5 4y = thermal conductivities: effective, solid, and gas
¢ = void fraction
B=1
¢ =0.034

While the particle bed is treated homogeneously with respect to its thermal properties, the sintering
behavior is idealized in another way: the bed is assumed to consist either of a cubic array of cylinders with
open pores, as first suggested by Scherer[1], or, if the density is at least 0.94 of the theoretical maximum, of
an array of spheres, as proposed by Mackenzie and Shuttleworth [3]. With these two idealizations we can
account for both the heat transfer and resulting softening, flow and coalescence of the irradiated material.
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This combined approach to a sxqtermg model (i.e., a 1-D thermal/Scherer model) was first used by Sun
et al[5]. In that work they used a ﬁmte difference algonthm to follow the sintering process in time and space
in a single layer of powder In this work we have attempted to solve the problem with the finite element
method, with our ultimate goal being a full 3-D analysis for a sintered part of arbitrary geometry. Our first
steps, which are presented here, demonstrate the successful application of this technique to the same prob-
lem solved in Ref. 5, and extend that analysis to the case of a multiply layered part. To carry out the finite
element analysis, we have used the MARC finite element package, to which was appended an appropriate
user written subroutine to include the sintering submodel. Ultimately we believe that the FEM will provide
the necessary flexibility to study the sintering process in parts of complex geometry, which are routinely
made by the SLS process. In particular we have used the MARC code because of its ability to solve nonlin-
ear heat conduction equations. Furthermore, MARC is setup to accept user written subroutines.

Thermal submodel

The one dimensional form of the heat transfer equation was used, which is representative of the physical
situation of a quickly moving laser heat source scanning over a bed of low thermal diffusivity far from the
ends of the scanning path. The equations are therefore:

or _
pcrd = L&) €Q2)

with the following initial and boundary conditions:

q, for 0<1<t
0 fort>t
T(z,t) -0 forz-—oeo, t>0

T(z,0) =T,

K270, =q(0) {
€Q3)

where: T = T(z,t) = temperature field with respect to position and time
K = effective bed conductivity
Cp = specific heat
p = density
q = laser flux
T = laser pulse duration

The boundary condition at z = 0 assumes that all the energy incident on the bed is absorbed. At a given
temperature the thermal properties in EQ 2 will change with time due to the sintering process, which causes
areduction in void fraction. In this work only the density and conductivity changes are tracked and updated.
An average value for the specific heat is used. The properties may also be explicit functions of temperature,
but we have ignored this dependency in this work. Future extensions of the model will include it.

The functional dependency of the conductivity on void fraction is given in EQ 1; that of the density p is
given by:

p=p,(L-g) (EQ4)
where pg = full density.

The finite element approximation to the heat conduction equation EQ 2, using effective thermal conduc-
tivity EQ 1 and modified density EQ 4, is discussed in a later section. ‘
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The Scherer and Mackenzie-Shuttleworth Models

To follow the evolution of the change in density or void fraction as a function of time and temperature,
the Scherer model was used for the low density phase of the process (p <0.94 p), and the Mackenzie - Shut-
tleworth model was used for higher densities. Both of these models assume that the surface energy reduction
of the sintering powder drives the process through viscous mass flow dissipation. At the lower densities the
powder is assumed to consist of an open pore network of cylinders arranged cubically, with the cylinder
diameters equal to the particle diameter and the cylinder lengths proportional to the pore diameter. As sinter-
ing proceeds, the cylinder heights collapse, reducing the void fraction in the powder bed, until the cylinder
walls touch one another. At this point the situation can be described by contiguous spheres with closed
pores. The essential relationships for our needs that follow from this approach are:

de M3 2-3cx

=== EQS)
at n 6 ?\/x(l—cx)2

for open pore, low density powder beds and partially sintered parts(i.e. p < 0.94p,), and
de _ M1 4n 7 EQ6)

Ps -
e TR s e (e e ../1
Y ) ( 3 ) ( 5 )
r closed pore (i.e. p > 0.94p,) beds and parts. These equations describe the contraction or free strain rate
3 of the sintering material. The quantity M appearing in both equations is given by:

M =", EQ7)

where 'y = surface energy and n = the number of particles per unit volume of fully densified material. The
quantity 7 is the viscosity of the material, which is a function of temperature, given by [5]:

AE
n= Aexp(l—ﬁ:), (EQ8)

with A and AE constants. In the work reported here M and 1y were determined separately from EQs 7 and 8,
respectively.This requires the separate determinations be made of surface energy,y, activation energy, AE,
and the constant A. In principle, however, the ratio M/ can be obtained directly from density vs. time
measurements, as was pointed out by Scherer[1].

The strain rate for low density sintering, EQ 5, is also seen to be a function of x. This is the aspect ratio
of the cylinders that make up the unit cell in that model. (The constant ¢ in that equation is 8 V2 /3n.) In the
Mackenzie - Shuttleworth model, EQ 6, strain rate is a function-of the ratio of the densities of the fully
sintered material pg and the actual density of the bed p.

As the particles sinter, the void fraction € drops. The Scherer model gives an expression for € as a func-
tion of the cylinder aspect ratio in the unit cell as:

£ =1-3m’+82x° = I—E?- EQ9)

§

Given a value of the particle bed density or void fraction, EQ 9 can be used to find the corresponding
value of x which in turn can be substituted into EQ 5 to find a new strain increment Ae 'and a new ¢;,1 = ¢; +
Ae.
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When the subroutine is called, the viscosity n(T) is found by EQ 8. If the density is greater than 0.94 of
full density, the Mackenzie - Shuttleworth model holds and EQ 6 is used to find the updated free strain. If the
density is less than this value, EQ 9 is used to find the aspect ratio x of the cylinders in the Scherer model,
and then EQ 5 calculates the updated free strain.To find the updated void fraction € and density p corre-
sponding to the strain e, another relationship must be used:

g=1- %qexp (-3e) . (EQ 10)

s

This equation applies to any material undergoing isotropic true strain, i.c., € = In(l/ly), where 1 and 1y are
the final and initial lengths of any line undergoing a strain e. The result from EQ 10 is fed back to EQ 1 to
find the updated conductivity, and the subroutine is exited

Finite Element Model

This section describes the implementation of the previously discussed sintering model into a general
purpose finite element program and then presents some finite element results validating these numerical
models. A discussion on the technical approach is given first and then results of single and multi-layer
sintering processes are presented.

Technical Approach

In the finite element formulation the discretization of both the space and the time variables serves as the
basis of the approximation. The region of interest s in the sintering material is subdivided into elements, and
the temperature T(s) within an element is interpolated from the nodal values T of the element through the
interpolation functions N(s),

T(s) =N(@sT EQ1)

The governing equation of the heat conduction problem can be obtained from the minimization of
weighted residuals of the differential equation, resulting in the matrix equation :

C(NT+K(DT = Q (EQ 12)

where C(T) and K(T) are the temperature dependent heat capacity and thermal conductivity matrices, T is
the nodal temperature vector, T is the time derivative of the temperature vector, and Q is the heat flux vector.

The system matrices C(T) and K(T) are obtained from the summation of all element matrices C¢(T) and
Ke(T) in the mesh as
C(T) = Y .C(T)

(EQ 13)
K(T) = Y K. (D

The element matrices C¢(T) and K¢(T) can be evaluated from the following volume integrals over the
volume of the element:

C,= J'NTp cNdV
14

(EQ 14)
K,= J-BTdeV
v

89



In EQ 14 p is the mass density, ¢ is the specific heat and k is the thermal conductivity of the material.
The matrices N and B are the shape function and temperature gradient, respectively. As discussed in the
previous section, the sintering material can be characterized by effective conductivity k¢ and density p,
which are dependent on the void fraction €. It is obvious that once k.g and p are given then both the heat
capacity and the conductivity matrices in the finite element equation can be easily calculated:

C,= '[N’Tp (€) cNdV
14

(EQ15)
K, = [B'k 4 (e) BaV
14

Note that ¢ and kg in the above equation can also be dependent on temperature.

Although the time variable can be discretized the same way as space variables, a finite difference
scheme is usually chosen in the finite element analysis. The selection of a backward difference scheme
yields the following expression:

1 1
[5CM+KM T, = 0,+ £CDT, (EQ 16)

‘Equation 16 computes nodal temperatures for each time increment At. It can be seen that starting from
the initial conditions the temperature is calculated at an initial time step for all elements. The effective
conductivity, density (void fraction) and free strain are updated in the sintering subroutine. The new conduc-
tivities and densities are then used to find the temperatures at the next time increment.

Case Studies

During this investigation two finite element heat conduction analyses were carried out for validating the
previously discussed sintering and heat transfer models. The two analyses simulate a single and a multi-
layered sintering processes, respectively. Both the 2-node three-dimensional heat element and the 4-node
two-dimensional planar heat element were used for the analyses and identical results were observed. The
numerical results presented in this section are those of the 4-node model.

As shown in Fig. 1 the single-layered model consists of 30 4-node elements and 62 nodes. A concen-
trated laser flux q was applied at one end (nodes 31, 62) of the model for a duration of T seconds. Both the
 initial and boundary conditions and the material properties were obtained from Ref. 7 (Table 1). Figures 2
and 3 show time variations of applied laser flux and temperature at the point of application (node 31). The
void fraction distribution along the depth of the model at 0.008 seconds is depicted in Fig. 4. The character-
istics of the sintering process can be clearly seen from these results.

The multi-layered model is similar to the single-layered model but has 90 elements for three layers. The
same concentrated laser flux was applied sequentially in three passes to the end of the submodel for each
layer (nodes 31 and 122 for the first layer, nodes 61 and 152 for the second layer and nodes 91 and 182 for
the third layer). The duration of each flux application was the same 1 seconds. Both the initial/boundary
conditions and material properties were the same as in the single-layered model.

In order to deal with the multi-layered situation the program options ACTIVATE and DEACTIVATE
were used for the representation of the first pass (elements 1 to 30), the second pass (elements 1 to 60) and
the third pass (elements 1 to 90) of the sintering process. Although the total number of elements in the model
is 90, with the ACTIVATE and DEACTIVATE options there are actually 30 active elements in the first pass,
60 elements in the second pass and 90 elements in the third pass analyses, respectively.
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Figure 5 shows a finite element model using the 4-node planar heat transfer element for the layered
model. Variations in time of laser flux and temperature are depicted in Figs. 6 and 7, respectively. Note thata
transient time of 0.02 seconds is assumed for each pass. Figures 8,9,10 and 11,12, and 13 show distributions
along the layer depth of temperature and void fraction at transient times of 0.02, 0.04 and 0.06 seconds,

respectively.

The finite element results presented in this section are reasonable. However, a parametric study would
be very useful in determining the important parameters in the process. The intensity and duration of laser
flux, temperature dependency of material properties, as well as thermal and mechanical boundary conditions
are of great importance in the process.

TABLE 1. Initial conditions, boundary conditions and material properties (ABS) [Ref. 7]

Boundary Conditions:

Laser flux, qp 6.6 x 10’ W/m?
Laser duration, © 476x 104 s

Initial Conditions:

Initial bed temperature, Ty 293 °K
Initial density, p, 526 Kg/m®

Material constants:

Full Density, p 1095 Kg/m>
Viscosity coefficient, A 541x 1018 Pas
Activation energy, AE 20638 'K

~ Surface energy, Y 45 x 107 J/m?
Particle bed specific heat, Co 1580 J/’K-Kg
Conductivity of solid ABS, K, 0.21 W/'K-m
Conductivity of air, K, 0.026 W/°K-m

Conclusion

We have prescnted the first results of cfforts to apply the finite element method to the problem of laser
sintering. This has been accomplished by incorporating a subroutine for the sintering models of Scherer and
Mackenzie - Shuttleworth into the Marc heat conduction equation solver. Using this approach we have been
able to predict not only the behavior in a single layer of material, but also how a bed of powder sinters that is
laid down in discrete layers in time. Our next efforts will focus on extending the model to two dimensions in
order to asscss edge cffccts.
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